Меню

Сколько существует режимов сокращения мышц

Мышечное сокращение

  • Физиология
  • История физиологии

Виды мышечного сокращения

Перемещение тела в пространстве, поддержание определенной позы, работа сердца, сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются посредством мышц двух основных типов: поперечно-полосатых (скелетная, сердечная) и гладких, которые различаются клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Скелетные мышцы

Скелетная мускулатура является активной частью опорно-двигательного аппарата. В результате сократительной деятельности поперечно-полосатых мышц осуществляются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга;
  • поддержание позы.

Кроме того, один из результатов мышечного сокращения — выработка тепла.

У человека, как и у всех позвоночных, волокна скелетных мышц обладают четырьмя важнейшими свойствами:

  • возбудимость — способность отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала;
  • проводимость — способность к проведению потенциала действия вдоль всего волокна;
  • сократимость — способность сокращаться или изменять напряжение при возбуждении;
  • эластичность — способность развивать напряжение при растягивании.

В естественных условиях возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. Чтобы вызвать возбуждение в эксперименте, применяют электрическую стимуляцию.

Непосредственное раздражение самой мышцы называется прямым раздражением; раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы (возбуждение нейромоторных единиц), — непрямым раздражением. Ввиду того что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышц.

Типы сокращения

Изотонический режим — сокращение, при котором мышца укорачивается без формирования напряжения. Такое сокращение возможно при пересечении или разрыве сухожилия или в эксперименте на изолированной (удаленной из организма) мышце.

Изометрический режим — сокращение, при котором напряжение мышцы возрастает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим — сокращение, при котором длина мышцы изменяется по мере увеличения ее напряжения. Такой режим сокращений наблюдается при осуществлении трудовой деятельности человека. Если напряжение мышцы возрастает при ее укорочении, то такое сокращение называют концентрическим, а в случае увеличении напряжения мышцы при ее удлинении (например, при медленном опускании груза) — эксцентрическим сокращением.

Виды мышечных сокращений

Выделяют два вида мышечных сокращений: одиночное и тетаническое.

При раздражении мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют следующие три фазы:

  • фаза латентного периода — начинается от начала действия раздражителя и до начала укорочения;
  • фаза сокращения (фаза укорочения) — от начала сокращения до максимального значения;
  • фаза расслабления — от максимального сокращения до начальной длины.

Одиночное мышечное сокращение наблюдается при поступлении к мышце короткой серии нервных импульсов моторных нейронов. Его можно вызвать воздействием на мышцу очень коротким (около 1 мс) электрическим стимулом. Сокращение мышцы начинается через временной промежуток до 10 мс от начала воздействия раздражителя, который и называют латентным периодом (рис. 1). Затем развиваются укорочение (длительность около 30-50 мс) и расслабление (50-60 мс). На весь цикл одиночного мышечного сокращения затрачивается в среднем 0,1 с.

Длительность одиночного сокращения у разных мышц может сильно варьировать и зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления замедляется при развитии утомления мышцы. К быстрым мышцам, имеющим кратковременное одиночное сокращение, относятся наружные мышцы глазного яблока, век, среднего уха и др.

При сопоставлении динамики генерации потенциала действия на мембране мышечного волокна и его одиночного сокращения видно, что потенциал действия всегда возникает раньше и лишь затем начинает развиваться укорочение, которое продолжается и после окончания реполяризации мембраны. Вспомним, что длительность фазы деполяризации потенциала действия мышечного волокна составляет 3-5 мс. В течение этого промежутка времени мембрана волокна находится в состоянии абсолютной рефрактерности, за которой следует восстановление се возбудимости. Поскольку длительность укорочения составляет около 50 мс, то очевидно, что еще во время укорочения мембрана мышечного волокна должна восстанавливать возбудимость и будет способна отвечать на новое воздействие сокращением на фоне еще незавершенного. Следовательно, на фоне развивающегося сокращения в мышечных волокнах на их мембране можно вызвать новые циклы возбуждения и следующие за ними суммирующиеся сокращения. Такое суммирующееся сокращение получило название тетанического (тетанус). Его можно наблюдать в одиночном волокне и целой мышце. Однако механизм тетанического сокращения в естественных условиях в целой мышце имеет особенности.

Рис. 1. Временные соотношения одиночных циклов возбуждения и сокращения волокна скелетной мышцы: а — соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокращения: 1 — латентный период; 2 — укорочение; 3 — расслабление; б — соотношение потенциала действия, возбудимости и сокращения

Тетанусом называют сокращение мышцы, возникающее в результате суммирования сокращений ее моторных единиц, вызванных поступлением к ним множества нервных импульсов от моторных нейронов, иннервирующих данную мышцу. Суммирование усилий, развиваемых при сокращении волокон множества двигательных единиц, способствует увеличению силы тетанического сокращения мышцы и влияет на длительность сокращения.

Различают зубчатый и гладкий тетанус. Для наблюдения в эксперименте зубчатого тетануса мышцы ее стимулируют импульсами электрического тока с такой частотой, чтобы каждый последующий стимул наносился после фазы укорочения, но еще до окончания расслабления. Гладкое тетаническое сокращение развивается при более частых раздражениях, когда последующие воздействия наносятся во время развития укорочения мышцы. Например, если фаза укорочения мышцы составляет 50 мс, фаза расслабления — 60 мс, то для получения зубчатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого — с частотой не менее 20 Гц.

Для демонстрации различных видов тетануса обычно используют графическую регистрацию на кимографе сокращений изолированной икроножной мышцы лягушки. Пример такой кимограммы представлен на рис. 2.

Если сравнивать амплитуды и усилия, развиваемые при различных режимах сокращения мышцы, то они при одиночном сокращении минимальны, увеличиваются при зубчатом тетанусе и становятся максимальными при гладком тетаническом сокращении. Одной из причин такого возрастания амплитуды и силы сокращения является то, что увеличение частоты генерации ПД на мембране мышечных волокон сопровождается увеличением выхода и накоплением в саркоплазме мышечных волокон ионов Са 2+ , способствующего большей эффективности взаимодействия между сократительными белками.

Рис. 2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

При постепенном увеличении частоты раздражения нарастание силы и амплитуды сокращения мышцы идет лишь до определенного предела — оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, называют оптимальной. Дальнейшее увеличение частоты раздражения сопровождается уменьшением амплитуды и силы сокращения. Это явление называют пессимумом ответной реакции, а частоты раздражения, превышающие оптимальную величину — пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

В естественных условиях частота и режим посылки моторными нейронами нервных импульсов к мышце обеспечивают асинхронное вовлечение в процесс сокращения большего или меньшего (в зависимости от числа активных мотонейронов) количества двигательных единиц мышцы и суммацию их сокращений. Сокращение целостной мышцы в организме но своему характеру близко к гладкотеганическому.

Для характеристики функциональной активности мышц оценивают показатели их тонуса и сокращения. Тонусом мышцы называют состояние длительного непрерывного напряжения, вызванное попеременным асинхронным сокращением ее моторных единиц. При этом видимое укорочение мышцы может отсутствовать из-за того, что в процесс сокращения вовлекаются не все, а лишь те двигательные единицы, свойства которых наилучшим образом приспособлены к поддержанию тонуса мышцы и силы их асинхронного сокращения недостаточно для укорочения мышцы. Сокращения таких единиц при переходе от расслабления к напряжению или при изменении степени напряжения называют тоническими. Кратковременные сокращения, сопровождаемые изменением силы и длины мышцы, называют физическими.

Механизм мышечного сокращения

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат-миофибриллы (рис. 3). Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматический ретикулум и система поперечных трубочек — Т-система.

Читайте также:  Мышцы туловища человека на латинском

Рис. 3. Строение мышечного волокна

Функциональной единицей сократительного аппарата мышечной клетки является саркомер, из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками (рис. 4). Саркомеры в миофибрилле расположены последовательно, поэтому сокращения capкомеров вызывают сокращение миофибриллы и общее укорочение мышечного волокна.

Рис. 4. Схема строения саркомера

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченносгь, которая обусловлена особой организацией сократительных белков протофибрилл — актина и миозина. Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина.

Тропонин и тропомиозин играют (см. рис. 3) важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска H. В состоянии покоя в ней нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина.

В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре H-полоски обнаружена М-линия — структура, которая удерживает нити миозина.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование современной техники позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили X. и А. Хаксли предложить теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых.

Рис. 5. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

электрохимическое преобразование:

  • генерация ПД;
  • распространение ПД по T-системе;
  • электрическая стимуляция зоны контакта T-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са 2+ ;

хемомеханическое преобразование:

  • взаимодействие ионов Са 2+ с тропонином, изменение конфигурации тропомиозина, освобождение активных центров на актиновых филаментах;
  • взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги;
  • скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходите помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Г-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ ‘ с 10 -7 до 10 -5 . Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са 2+ т.е. электрохимическое преобразование (рис. 6).

При повышении внутриклеточной концентрации ионов Са 2+ происходит их связывание с тропонином, который изменяет конфигурацию тропомиозина. Последний смешается в желобок межу нитями актина; при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением формации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин. Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином и смещение тропомиозина.

На пятом этапе электромеханического сопряжения происходит присоединение головки поперечного мостика миозина к мостикуактина — к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т.е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Рис. 6. Электромеханические процессы в мышце

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей (рис. 7).

Первоначально полагали, что ионы Са 2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Рис. 7. Иллюстрация теории скользящих нитей:

А. а — мышца в покое: А. 6 — мышца при сокращении: Б. а. б — последовательное взаимодействие активных центров миозиновой головки с центрами на активной нити

Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и акгинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 10 -6 М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ . Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ. а энергообеспечение работы кальциевого насоса — также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Читайте также:  Полуостистая мышца головы начало и прикрепление

Функциональное значение АТФ при сокращении скелетной мускулатуры

  • Гидролиз АТФ под действием миозина, в результате поперечные мостики получают энергию для развития тянущего усилия
  • Связывание АТФ с миозином, ведущее к отсоединению поперечных мостиков, прикрепленных в актину, что создает возможность повторения цикла их активности
  • Гидролиз АТФ (под действием Са 2+ -АТФазы) для активного транспорта ионов Са 2+ в латеральные цистерны саркоплазматического ретикулума, снижающий уровень цитоплазматического кальция до исходного уровня

Суммация сокращений и тетанус

Если в эксперименте на отдельное мышечное волокно или всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающие сокращения будут иметь большую амплитуду, чем максимальное сокращение при одиночном раздражении. Сократительные эффекты, вызванные первым и вторым раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 8). Оно наблюдается как при прямом, так и непрямом раздражении мышцы.

Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность: он должен быть длиннее рефрактерного периода, в противном случае на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта: если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западением (рис 8, Ж-Г); если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис 8, А-В).

Рассмотрим суммацию в икроножной мышце лягушки. Продолжительность восходящей фазы ее сокращения примерно 0,05 с. Поэтому для воспроизведения на этой мышце первого типа суммации сокращений (неполная суммация) необходимо, чтобы интервал между первым и вторым раздражениями был больше 0,05 с, а для получения второго типа суммации (так называемая полная суммация) — меньше 0,05 с.

Рис. 8. Суммация мышечных сокращений 8 ответ на два стимула. Отметка времени 20 мс

Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.

Тетанус мышцы

Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением, или тетанусом.

Амплитуда его может быть в несколько раз больше величины максимального единичного сокращения. При относительно малой частоте раздражений наблюдается зубчатый тетанус, при большой частоте — гладкий тетанус (рис. 9). При тетанусе сократительные ответы мышцы суммированы, а электрические ее реакции — потенциалы действия — не суммируются (рис. 10) и их частота соответствует частоте ритмического раздражения, вызвавшего тетанус.

После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется послететанической, или остаточной, контрактурой.

Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

Утомление мышцы

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Рис. 9. Тетанус изолированного мышечного волокна (по Ф.Н. Серкову):

а — зубчатый тетанус при частоте раздражения 18 Гц; 6 — гладкий тетанус при частоте раздражения 35 Гц; М — миограмма; Р — отметка раздражения; В — отметка времени 1 с

Рис. 10. Одновременная запись сокращения (а) и электрической активности (6) скелетной мышцы кошки при тетаническом раздражении нерва

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает до нуля. Регистрируемую при этом запись сокращений называют кривой утомления.

Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами:

  • во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, длительно раздражая, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы;
  • постепенное истощение в мышце энергетических запасов. При длительной работе изолированной мышцы резко уменьшаются запасы гликогена, вследствие чего нарушается процесс ресинтеза АТФ и креатинфосфата, необходимый для осуществления сокращения.

И.М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например при работе мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И.М. Сеченовым активным. Он рассматривал эти факты как доказательство того, что утомление развивается прежде всего в нервных центрах.

источник

2. Формы и типы мышечного сокращения. Режимы сокращения мышц.

Различают несколько форм и типов мышечных сокращений.

1. Динамическая форма мышечного сокращения. При таком типе сокращений изменяется длина мышцы, но не изменяется напряжение. Эта форма включает два типа:

а) Изотонический тип или концентрационный (мышца укорачивается, но не изменяет своего напряжения). Например, ходьба.

б) Эксцентрический тип. Если нагрузка на мышцу больше, чем ее напряжение, то мышца растягивается. Например, при опускании тяжелого предмета.

2 Статическая форма мышечного сокращения. Эта форма наблюдается при поддержании позы или преодолении силы земного притяжения.

Данная форма включает один тип мышечного сокращения – изометрический. При изометрическом сокращении мышца изменяет свое напряжение, но не изменяет длины.

3. Форма ауксотонического сокращения или смешанная.

Деление на формы и типы мышечных сокращений является условным т.к. все сокращения являются смешанными. Однако преобладает какой-то один тип.

Режимы сокращения мышц.

Характер или режим сокращения мышцы зависит от частоты импульсов, которые поступают от мотонейрона.

Выделяют одиночные и тетанические мышечные сокращения.

Если на мышцу подействовать одиночным импульсом, то происходит одиночное мышечное сокращение, в котором выделяют несколько фаз:

1. Латентный (скрытый) период – время после действия раздражителя до начала сокращения.

2. Фаза укорочения (при изотоническом сокращении) или фаза напряжения (при изометрическом сокращении).

Одиночное мышечное сокращение характеризуется не значительной утомляемостью, но при этом мышца не способна реализовать свои возможности.

Тетаническое мышечное сокращение. Если на мышечное волокно воздействуют два быстро следующих друг за другом импульса, то сокращения накладываются и возникает сильное сокращение.

Наложение двух следующих друг за другом импульсов называется суммацией.

Выделяют два вида суммации:

1. Если второй раздражитель поступает в момент, когда мышца начала расслабляться, то кривая имеет вершину отдельную от вершины первого сокращения. Этот вид суммации называется неполной.

2. Если второй раздражитель поступает в момент, когда сокращение мышцы еще не дошло до вершины т.е. мышца не начала расслабляться, то оба сокращения сливаются в единое целое. Этот вид суммации называется полной.

Длительное и сильное сокращения мышцы, под влиянием ритма импульсов с последующим расслаблением называется тетанусом. У человека тетанус можно получить при частоте 50—70 имп/сек.

Выделяют два вида тетануса:

1. Зубчатый. Возникает при малой частоте подачи импульсов (до 150 имп/cек).

2. Гладкий. Возникает при высоком ритме подачи импульсов (более 150 имп/cек).

При этом различают оптимальный и пессимальный ритмы работы мышцы.

Читайте также:  Рефлекс сухожилия двуглавой мышцы плеча

Так, если частота подачи и сила импульсов вызывает максимальный сократительный эффект, то это оптимальный ритм работы. Оптимальный ритм работы формируется через фазу экзальтации (т.е. супернормальности).

Если частота подачи импульсов и сила раздражителя слишком велики, то это вызывает снижение силы сокращения. Такой ритм называется пессимальным. Этот ритм работы мышцы формируется через фазу абсолютной рефрактерности.

источник

Физиология человека и животных

Разделы

11. Виды и режимы мышечных сокращений. Работа и сила мышц. Типы нервных волокон

Существует два вида мышечных сокращений – одиночное и тетаническое. Одиночное мышечное сокращение является единственным видом сокращений для сердечной мышцы, а в скелетной мускулатуре оно носит искусственную этиологию и возникает в ответ на одиночный электрический сигнал и возникновение потенциала действия (ПД). Такое сокращение, длящееся » 100 мс, имеет форму волны (см. рис.) и включает три фазы: 1 – латентный период (от 2-3 до 10 мс), длящийся от момента нанесения раздражения до начала сокращения, 2 – фаза укорочения или сокращения (40-50 мс) и 3 – фаза расслабления (около 50мс). В естественных условиях импульсы поступают не одиночно, а сериями не менее 15-50 имп/с, на что мышца отвечает возникновением тетанического сокращения (тетануса). В его основе лежит явление суммации нескольких одиночных сокращений. В зависимости от частоты импульсов различают зубчатый и гладкий тетанус.

Рисунок 5 — Виды мышечных сокращений:

А — фазы одиночного сокращения; Б — одиночное и тетанические сокращения

Зубчатый тетанус (неполный) возникает в том случае, когда каждый последующий импульс приходит в фазу расслабления мышцы.

Если частота раздражения выше, и каждый последующий импульс приходит в фазу укорочения мышцы, то происходит полная суммация, и тетаническое сокращение носит слитный характер – гладкий тетанус (полный).

Увеличение ответа при действии субмаксимальных раздражителей до определенного (максимального) уровня происходит за счет вовлечения в процесс возбуждения новых, не задействованных ранее, волокон. В случае дальнейшего возрастания раздражения (сверхмаксимальный уровень), ответ уже не увеличивается, и наоборот, при очень сильных раздражителях (5-10 и более порогов), можно достичь пессимального ответа.

В целостном организме мотонейроны посылают пачки потенциалов действия к двигательным единицам, которые в ответ сокращаются тетанически. Скелетные мышцы находятся в состоянии постоянного тонуса вследствие постоянной фоновой импульсации из моторных зон ЦНС.

Работа мышцы (А) – произведение груза (F) на расстояние (h). А = F*h, или А = F*dl, где dl – величина укорочения мышцы.

Относительная сила мышцы определяет максимальный груз, который мышца способна поднять. Данная величина гораздо более зависит от толщины мышцы, чем от ее длины.

Сила сокращения мышц определяется количеством вовлеченных в процесс сокращения двигательных единиц. Абсолютная сила – это отношение относительной силы к площади поперечного сечения мышцы, выраженной в см 2 . Например, абсолютная сила бицепса составляет 11,9 кг∕см 2 , икроножной мышцы – 5,9 кг∕см 2 .

Для оценки функциональной активности мышц говорят об их тонусе и фазических сокращениях.

Тонус – состояние длительного непрерывного напряжения.

Фазическими сокращениями мышцы называют кратковременное укорочение мышцы, сменяющееся ее расслаблением.

Величина сокращения (степень укорочения) мышцы зависит от ее морфологических свойств и физиологического состояния. Чем больше толщина мышцы, тем больший груз она может поднять при своем сокращении. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращение мышцы ослабевает.

Правило средних нагрузок: максимальная работа мышц осуществляется при средних, а не максимальных величинах нагрузки, так как

при более высоких нагрузках быстро развивается утомление.

Режимы мышечных сокращений:

1) изотоническое – сокращение, при котором происходит укорочение мышечных волокон, но сохранятся то же напряжение (например, при поднятии груза);

2) изометрическое – сокращение, при котором длина мышечных волокон не меняется, но увеличивается напряжение в ней (например, при сопротивлении давлению);

3) ауксотоническое – сокращение, при котором меняется и напряжение, и длина мышцы.

Сила сокращения мышц определяется числом активных мышечных волокон, участвующих в сокращении, частотой нервных импульсов и наличием синхронизации активности отдельных мышечных волокон во времени. Даже в покое скелетные мышцы редко бывают полностью расслабленными. Обычно в них сохраняется некоторое напряжение – тонус. Тонус мышц увеличивается после тяжелых физических упражнений и во время психоэмоционального напряжения.

При регулярных физических тренировках количество мышечных волокон не меняется, но увеличивается их диаметр за счет увеличения количества миофибрилл в волокнах.

Мышечная работа связана со значительными энергетическими затратами и, следовательно, требует повышенного притока кислорода. Это достигается путем активизации деятельности органов дыхательной и сердечно-сосудистой систем. Усиление обменных процессов при мышечной работе приводит к необходимости усиленного выделения продуктов обмена, а, соответственно, усиленной деятельности почек и потовых желез. Следовательно, физические нагрузки повышают деятельность физиологических систем, оказывают стимулирующее влияние на двигательную систему, приводят к совершенствованию двигательных навыков, развитию психических функций. При гиподинамии у детей страдают обменные процессы, снижается иммунитет, работоспособность, в том числе и умственная.

Утомляемость мышцы зависит от снабжения ее кислородом и кровью. КПД использования О2 мышцей составляет 20-25 %, а по мере тренированности может достигать 30 %.

В каждой мышце различают множество двигательных, или моторных единиц – определенное число мышечных клеток, иннервируемых одной нервной клеткой, причем каждый миоцит имеет свое нервное окончание.

Среди моторных единиц различают: быстрые, в состав которых входит в среднем около 50, и медленные – от нескольких сотен до тысяч мышечных клеток.

Типы нервных волокон:

1) медленные, неутомляемые (красные, статические, тонические) — это тонкие, богатые кровеносными сосудами и миоглобином мышцы, во время работы проявляют большую силу, долго не утомляются, но скорость их сокращений небольшая. Например, они сохраняют вертикальную статику, удерживают в определенном положении отдельные части тела, т.е. осуществляют опорную функцию. К ним также относятся наружные мышцы глазного яблока. Медленные фазические сокращения обеспечивают тонус мышц, и поэтому такие сокращения называются тоническими. Они необходимы для поддержания равновесия в статике и динамике. Медленные мышечные клетки составляют основную массу двигательных единиц. В них много миоглобина и миозина, где происходит окисление. Такие мышцы имеют красный цвет и мало утомляются.

2) быстрые, легко утомляемые (белые, динамические, фазические): они имеют толстые мышечные пучки, меньше кровеносных сосудов и миоглобина, скорость сокращений их велика так же, как и утомляемость. Уступая в силе, они способны производить разнообразные мелкие быстрые движения. Быстрые фазические аэробные мышцы немного бледнее, поскольку в них меньше миоглобина, но сохраняется еще достаточно большое количество миозина, а следовательно, интенсивно протекают процессы окисления. В таких мышцах утомление развивается быстрее, чем в выше описанных. По количеству мышечных клеток в моторной единице быстрые фазические мышцы занимают второе место после медленных. Анаэробные мышцы обеспечивают самые быстрые сокращения. В них мало миоглобина и миозина. Клетки, входящие в состав быстрых анаэробных мышц имеют белый цвет. В таких мышцах протекает анаэробный гликолиз, поэтому, в результате накопления недоокисленных продуктов (молочной кислоты), развивается кислородный долг, и как следствие, самое быстрое утомление. Примером таких мышц могут служить мышцы пальцев рук и глаза.

3) быстрые, устойчивые к утомлению (промежуточные).

Все три типа волокон могут содержаться в одной и той же мышце, и соотношение их числа определяется в значительной степени наследственностью. Например, в четырехглавой мышце бедра человека процент медленных волокон может составлять от 40 до 98 %. Чем больше медленных волокон, тем больше мышца приспособлена к работе на выносливость. И наоборот, люди с высоким процентом быстрых сильных волокон более способны к работе, требующей большой силы и скорости сокращения мышц.

Сила сокращения мышц определяется числом активных мышечных волокон, участвующих в сокращении, частотой нервных импульсов и наличием синхронизации активности отдельных мышечных волокон во времени. Даже в покое скелетные мышцы редко бывают полностью расслабленными. Обычно в них сохраняется некоторое напряжение – тонус. Тонус мышц увеличивается после тяжелых физических упражнений и во время психоэмоционального напряжения.

источник